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DOMAIN DISCOVERY (DD) PROCESS Q: How to Assist Analysts in DD Process?
Iterative process to identify, retrieve and learn information A: Domain Discovery Tool
and sources from the Web relevant for a specific information S .
. .  Support exploratory data analysis (EDA) of web pages
need with a human-ln-the-loop = Multidimensional scaling visualization of pages (PCA, TSNE)
R — { Eoaucad g = Maintain search context and capture analyst’s feedback (Elasticsearch)
Domain Crawler = Summarize search results (Aggregations, Topic Modeling)
- knowledge I = Streamline annotations
DDT = Multi-criteria filtering (By gueries, tags, date/time, keywords)
Domain Computational * Translate the analyst’s interactions with the Web pages into a
Discovery model computational model of the domain
= Provide quality indicator of domain model (Accuracy of online calibrated SVM with
I i SGD training)
J e = Further discovery of domain on the Web with model through:
[ Search Engines J ~ Content - Focused crawling (ACHE)
. Index - Automated searches (ACHE Seed Finder)
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Tags: & So you know the Bayes rule. How does it relate to machine python java and matlab I
Select All learning? It can be quite difficult to grasp how the puzzle pieces analys |S

fit together - we know ... _ .
Irelevant (84) http://fastml.com/bayesian-machine-learning extremely powerful he said. “remember that d |ﬂ:erent
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using these things
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5% 1. saliency(term w) = frequency(w) * [sum_t p(t | w) * log(p(t | w)/p(t))] for topics t; see Chuang et. al (2012)

2. relevance(term w | topic t) = A * p(w [ ) + (1 - A) * p(w | t)/p(w); see Sievert & Shirley (2014) Majorlty Of the users found more
relevant pages with DDT than
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