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Talk Outline

• Why modular neural networks (MNN)?

• Overview of Mixture of Experts (MoE), a gated modular neural 
network architecture

• What is interpretability with MoE?

• Do existing MoE architectures learn an interpretable task 
decomposition? 

• Why do existing MoE architectures not learn an interpretable 
task decomposition?

• Proposed solutions for better MoE task decomposition for 
interpretability and transferability



Motivation

• Modular neural networks (MNN) have recently been 
demonstrated to achieve high performance with much less 
parameters Shazeer et al [1], Rajbhandari et al [2]

• They reduce inference time by conditional computation

• MNN could be inherently more interpretable

− Potentially learn insightful problem decomposition

− Modular attribution of errors

• Can facilitate modular transferability

• Modules could be multi-modal Kaiser et al [3]

• Potential for continual learning Hihn et al [4]



Mixture of Experts (MoE) architecture

§ Gated modular neural network

§ Set of simple independent neural 
networks called “experts”

§ Simple neural network that works as a 
gate or soft-switch

§ Gate learns the sample based expert 
selection policy 

§ Gate allocates samples to experts, 
decomposing the task between experts

§ Model output is some combination or 
selection of the outputs of the individual 
experts

§ Experts and gate are trained together 
end-to-end



MoE Architectures

• Fascinatingly, many MoE architectures can be realized 
with different:

− inference methods (eg. expected sum of or expert outputs, 
stochastic selection of expert outputs)

− loss computations (eg. expected sum of expert losses)

− regularizations (eg. expert importance regularization), and

− expert and gate training methods (eg. SGD, EM)



MoE Architectures : Stochastic Model

1. Stochastic Model [5]: 
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• Stochastic model allows conditional 
computation during inference as only 
one expert is chosen.

• Inference and training are different

• Experts are truly independent

𝑀 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑡𝑠
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2. Expectation Model [6]:
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MoE Architectures :
Expectation and Pre-Softmax Models

3. Pre-softmax Model : 
�⃗� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ∑!"#$ 𝑝! 𝑜!
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• Output is a linear combination of the expert outputs and hence 
it is not identifiably unique

• Inference and training are the same

• Residual errors could force all or most experts to update

• Experts are coupled and hence co-operate rather than 
compete

MoE Architectures :
Expectation and Pre-Softmax Models



• Jacobs et al [7] and Kirsch et al [8] designed multi-level 
experts and gate as generalized linear models. 

• Learning is treated as a maximum likelihood problem and 
parameters are adjusted using Expectation-Maximization 
(EM) algorithm.

• [7] has experts only in the first level. [8] is a composition of 
experts at each level determined by the gate at that level.

• Much slower than training with SGD.

MoE Architectures: Hierarchical Models

Hierarchical model from [7] Hierarchical model from [8]



Research Questions

1. How are  tasks decomposed between experts with the existing 
methods? 

2. Does the decomposition allow interpretability by attribution?

3. What is a good problem decomposition for interpretability?

4. Does the task decomposition among the experts enable 
transferring them to other tasks? 

5. How to train MoE for better interpretability and transferability?

6. Does the same decomposition of the tasks enable both 
interpretability and transferability? Or do they need different 
task decompositions? 



What is interpretability?

• Gating network learns a meaningful decomposition of the 
input space into regions with natural ’rules’. For example, for a 
classification task it could use different modules to predict 
different classes; and/or 

• Each module learns non-intersecting functions or subsets of 
the task 

• Facilitates:

• Attributing errors to the gate or

• Attributing errors to the modules

• Model debugging



MoE has two common pathological problems

Trivial Gate: One expert learns all the classes. Known as module 
collapse, it occurs when the gate selects the same expert for all the 
samples. The MoE output does not depend on the gate and is in effect 
the same as a single model resulting in poor interpretability. 

Trivial Experts: One expert learns only one class. It occurs when an 
expert classifies all inputs as the same class. In this case the gate does 
all the classification and could result in poor transferability. 

• Both cases indicate poor allocation of data samples to the experts, 
by the gate, subsequently leading to either overuse or starvation of 
experts. 

Does the gate learn a ‘natural’ task 
decomposition? 



Does the gate learn a ‘natural’ task 
decomposition? 

• Gate decomposition of tasks:

• does not always guarantee interpretability

• same module E1 is used for FMNIST and MNIST data

• under utilizes experts

Gate allocation of tasks to experts for the combined FashionMNIST
and MNIST datasets 
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Why does the gate not learn a ‘natural’ task 
decomposition?

Optimality problem?

• Is there is a training disadvantage for the interpretable task 
decomposition, that is, the training converges slower?

• Does an interpretable task decomposition lead to a higher 
overall error rate? 

Training Problem?

• Is the heuristic of jointly optimising gate and experts 
sufficiently good to find a natural decomposition? 



Does an interpretable task decomposition 
exist and can the gate learn it? 

We designed an experiment to test if a gate can learn a good 
decomposition and if there are any disadvantages to learning it.



Does an interpretable task decomposition 
exist and can the gate learn it? 

• Pre-train experts with an interpretable split of tasks

• for example, [t-shirt, sandal], [trouser, pullover], [dress, coat], [4,6], [5,8], [7,9]

• Gate trained on pre-trained experts decomposes the task cleanly as shown 
below.

Gate allocation of tasks to experts for the combined FashionMNIST and 
MNIST datasets with gate trained on pre-trained modules
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Why does the gate not learn a ‘natural’ task 
decomposition?

• Is there a learning advantage for a bad decomposition?

Learned decomposition

Fixed decomposition



Why does the gate not learn a ‘natural’ task 
decomposition?

• Is there an error advantage for a bad decomposition?

Fixed decomposition

Learned decomposition



Why does the gate not learn a ‘natural’ task 
decomposition?

• Is it the heuristic of jointly training the gate and experts?

• GMNN trained with 2 experts with different learning rates

• Expert with higher learning rate captures most of the data samples

• Joint expert and gate training could lead to poor allocation of data samples and hence bad 
decompositions 

(a) Sample distribution between 2 modules  (b) Average training loss

(a) (b)



For the results discussed thus far and further details on them 
please refer to our XAI workshop paper at NeurIPS 2021:

Yamuna Krishnamurthy and Chris Watkins. Interpretability in Gated Modular 
Neural Networks. In Explainable AI approaches for debugging and diagnosis 
(XAI) Workshop at NeurIPS, 2021.



Problems with ‘end-to-end’ MoE training 
and proposed solutions

Poor initial gating decisions lead to two issues that 
significantly affect task decomposition of MoE:

1. Poor allocation of training samples leads to poor expert 
utilization and starvation, and thereby to

2. Unnatural task decompositions

Proposed solutions are to improve:
1. Batch distribution to experts while training, and

2. Expert utilization



Measures of expert utilization and sample 
distribution?

• Per sample gating entropy 𝑯𝒃: Measures per sample expert 
allocation. Low 𝐻" indicates less uncertainty in selecting an expert 
per sample.
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• Expert utilization entropy 𝑯𝒆 : Measures batch expert utilization 
with entropy of the average of the gate probabilities over the 
batch. High 𝐻( indicates a good utilization of experts.
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• Both these measures were introduced in Kirsch et al [6]

𝐵 is the batch size
�⃗� is the per sample gate probabilities



Measures of expert utilization and sample 
distribution?

• Mutual Information 𝑰(𝑬; 𝒀) of MoE model 
output (𝒀) and expert 𝑬 :

− 𝐸 ∈ {𝐸!, … , 𝐸"} and 𝑌 ∈ 𝑌!, … , 𝑌# are the 
expert selection and model output random 
variables respectively

− 𝐼(𝐸; 𝑌) is a measure of the dependence of  𝑌 on 
𝐸. Higher 𝐼(𝐸; 𝑌) indicates better expert 
utilization

− 𝐼 𝐸; 𝑌 ≡ 𝐻 𝐸 + 𝐻 𝑌 − 𝐻(𝐸, 𝑌)

− We first compute the joint probabilities 𝑃(𝐸, 𝑌)
in Table 2 from observations in Table 1

− We then compute marginal probabilities 
𝑃 𝐸 and 𝑃 𝑌 from the joint probabilities

− We then compute the entropies from these 
quantities to compute mutual information

Count
(E,Y) 𝒀𝟏 … 𝒀𝑲

𝐸! 𝑐!! … 𝑐!#
⋮ ⋮ ⋱ ⋮

𝐸" 𝑐"! … 𝑐"#

Table 1 Matrix of count of number 
of times 𝐸! is selected for task 𝑌"

P(E,Y) 𝒀𝟏 … 𝒀𝑲 𝑃(𝐸&)
𝐸# 𝑝(𝐸#, 𝑌#) … 𝑝(𝐸#, 𝑌$) 𝑃(𝐸#)

⋮ ⋮ ⋱ ⋮ ⋮

𝐸% 𝑝(𝐸% , 𝑌#) … 𝑝(𝐸% , 𝑌$) 𝑃(𝐸%)

𝑃(𝑌") 𝑝(𝑌#) 𝑝(𝑌$) 1

Table 2 Joint and marginal 
probabilities of 𝐸 and 𝑌



Proposed Solutions for Better Batch 
Distribution and Expert Utilization

• Existing approach 

• Batchwise expert importance regularization

• Our approach
• Decoupling training of experts and gating

• Attentive gating

• Gating with sample-similarity regularization



SOTA: Expert Importance Regularization for 
Better Expert Utilization

• In their paper: Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy 
Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural 
networks: The sparsely-gated mixture-of-experts layer. 2017 

• Jeff Dean et al at Google proposed a soft constraint approach, to enforce 
equal importance to all experts for a batch 𝑋, by adding a regularization 
term to the loss. 

• Relative importance of an expert to the batch is measured as:

𝐼 = 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑋 = .
&∈)

𝑝&

• Goal is to assign equal importance to all experts for a batch by ensuring low 
coefficient of variation (𝐶𝑉) of 𝐼 by minimizing the loss term 𝐿"*+,-./012:

𝐿"*+,-./012 𝑋 = 𝑤"*+,-./012 ⋅ 𝐶𝑉 𝐼
3

• 𝑤"*+,-./012is a hand-crafted parameter. 𝐶𝑉 = 𝜎(𝐼)/𝜇(𝐼)



SOTA: Expert Importance Regularization for 
Better Expert Utilization

Distribution of 10,000 MNIST samples by the gate to 5 experts during training: (a) 
without regularization and (b) with 𝐿_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒.

(a) (b)



SOTA: Expert Importance Regularization for 
Better Expert Utilization

Inference on 2000 samples of MNIST test data:  (a) Experts used by the gate for classification of 
each class with 𝐿'&()*+,-./ regularization; (b) Experts used by the gate for classification of each 
class with pre-trained experts for custom splits of the dataset.

(a) (b)

Ex
pe
rts



SOTA: Expert Importance Regularization for 
Better Expert Utilization

Inference on 2000 samples of combined FashionMNIST and MNIST test data:  (a) 
Experts used by the gate for classification of each class with 𝐿$%&'()*+,-
regularization; (b) Experts used by the gate for classification of each class with pre-
trained experts for custom splits of the dataset.

(a) (b)

Ex
pe
rts



Our Approach: Decoupling training of gate 
and experts using dual temperature softmax

Motivation

• MoE’s end-to-end joint training tightly couples the expert and 
gate training

• Gate’s softmax output produces a hard probability distribution. It 
converges to high probabilities for the preferred expert and low 
probabilities for the other experts

• This leads to data starvation of the unselected experts resulting 
in module collapse

• Decouple the gate and expert learning by smoothing the gate’s 
probability distribution for learning the experts but use the 
harder distribution to learn the gate.



Our Approach: Decoupling training of gate 
and experts using dual temperature softmax

Method

• Softer gate distribution can be achieved by regulating the gate’s softmax with 
a temperature 𝑇 applied to its logit input

• Soft softmax has been used by Hinton et al [9] for model distillation 

• We train gate and experts on different losses

Gate loss with hard softmax:

𝐿4 = 𝑙𝑜𝑠𝑠 𝑑, ∑"'($ 𝑝" 𝑜" 𝑤ℎ𝑒𝑟𝑒 𝑝" =
2&+ 50

∑123
4 2&+ 51

𝑧" is the logit for expert 𝑖

Expert loss with soft softmax:

𝐿2 = 𝑙𝑜𝑠𝑠 𝑑, ∑"'($ 𝑝". 𝑜" 𝑤ℎ𝑒𝑟𝑒 𝑝". =
2&+ 50/8

∑123
4 2&+ 51/8

𝑓𝑜𝑟 𝑇 > 1



Our Approach: Decoupling training of gate 
and experts using dual temperature softmax

Comparing training error for MoE without regularization, MoE with 𝐿$%&'()*+,-
regularization for 𝑤$%&'()*+,- I ∈ {0.2, … , 1.0} and dual temperature training with 
temperature 𝑇 ∈ {1.1, … , 50}



Our Approach: Decoupling training of gate 
and experts using dual temperature softmax

Comparing validation error for MoE without regularization, MoE with 𝐿$%&'()*+,-
regularization for 𝑤$%&'()*+,- I ∈ {0.2, … , 1.0} and dual temperature training with 
temperature 𝑇 ∈ {1.1, … , 50}



Our Approach: Decoupling training of gate 
and experts using dual temperature softmax

Comparing expert usage entropy for MoE without regularization, MoE with 
𝐿$%&'()*+,- regularization for 𝑤$%&'()*+,- I ∈ {0.2, … , 1.0} and dual temperature 
training with temperature 𝑇 ∈ {1.1, … , 6.0}



Our Approach: Decoupling training of gate 
and experts using dual temperature softmax

Comparing per sample expert usage entropy for MoE without regularization, MoE
with 𝐿$%&'()*+,- regularization for 𝑤$%&'()*+,- I ∈ {0.2, … , 1.0} and dual 
temperature training with temperature 𝑇 ∈ {1.1, … , 6.0}



Our Approach: Decoupling training of gate 
and experts using dual temperature softmax

Comparing expert and model output mutual information for MoE without 
regularization, MoE with 𝐿$%&'()*+,- regularization for 𝑤$%&'()*+,- I ∈
{0.2, … , 1.0} and dual temperature training with temperature 𝑇 ∈ {1.1, … , 6.0}



Our Approach: Decoupling training of gate 
and experts using dual temperature softmax

Observations

• Experiment results show that dual temperature training does 
improve expert utilization and prevents module collapse

• However, it still does not ensure an equitable expert usage 

• Dual temperature training does not have a significant 
performance improvement over MoE with 𝐿FGHIJKLMNO
regularization

• Hence, just an equitable distribution of samples to experts does 
not ensure equitable expert usage



Our Approach: Attentive Gate

Motivation

• We saw that just improving sample distribution to experts does not 
ensure a good gate task decomposition

• Gate’s probability prediction for a given sample is based on what 
the gate has learnt from the experts’ previous predictions for the 
sample but not on their current predictions for the sample

• Can we inform the gate of the current and previous predictions of 
the expert for the sample to make a more informed prediction?

• The attention mechanism seems like a natural choice to achieve 
this. The gate can learn which expert to attend to for a given 
sample based on its current and previous predictions for that 
sample



Our Approach: Attentive Gate

Method 
• Query 𝑄 is computed with 

output of the gate hidden layer
• Keys 𝐾 are computed with the 

outputs of the expert hidden 
layers

• 𝑊9 and 𝑊: are the query and 
key weight matrices respectively

• ℎ is the size of the hidden layer
• Attention scores 𝐴(𝑄, 𝐾)

computed with expert and gate 
outputs are used as the gating 
probabilities �⃗�

Attentive gate architecture with 2 experts

Q = 𝑊. ⋅ ℎ/
𝐾$ = 𝑊0 ⋅ ℎ-$

�⃗� = 𝐴 𝑄, 𝐾 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄 ⋅ 𝐾1/√ℎ)



Our Approach: Attentive Gate

Comparing training error for MoE without regularization, MoE with 𝐿'&()*+,-./ regularization for 
𝑤'&()*+,-./ 𝐼 ∈ {0.2, … , 1.0}, MoE training with attention, and combined training with 
attention and 𝐿'&()*+,-./ regularization for 𝑤'&()*+,-./ 𝐼 ∈ {0.2, … , 1.0}



Our Approach: Attentive Gate

Comparing validation error for MoE without regularization, MoE with 𝐿'&()*+,-./ regularization 
for 𝑤'&()*+,-./ 𝐼 ∈ {0.2, … , 1.0}, MoE training with attention and combined training with 
attention and 𝐿'&()*+,-./ regularization for 𝑤'&()*+,-./ 𝐼 ∈ {0.2, … , 1.0}



Our Approach: Attentive Gate

Comparing expert usage for MoE without regularization, MoE with 𝐿'&()*+,-./ regularization for 
𝑤'&()*+,-./ 𝐼 ∈ {0.2, … , 1.0}, MoE training with attention and combined training with attention 
and 𝐿'&()*+,-./ regularization for 𝑤'&()*+,-./ 𝐼 ∈ {0.2, … , 1.0}



Our Approach: Attentive Gate

Comparing per sample expert usage entropy for MoE without regularization, MoE with 
𝐿'&()*+,-./ regularization for 𝑤'&()*+,-./ 𝐼 ∈ {0.2, … , 1.0}, MoE training with attention and 
combined training with attention and 𝐿'&()*+,-./ regularization for 𝑤'&()*+,-./ 𝐼 ∈
{0.2, … , 1.0}



Our Approach: Attentive Gate

Comparing mutual information for MoE without regularization, MoE with 𝐿'&()*+,-./
regularization for 𝑤'&()*+,-./ 𝐼 ∈ {0.2, … , 1.0}, MoE training with attention and combined 
training with attention and 𝐿'&()*+,-./ regularization for for 𝑤'&()*+,-./ 𝐼 ∈ {0.2, … , 1.0}



Our Approach: Attentive Gate

Inference on 2000 samples of MNIST test data:  (a) Experts used by the attentive gate 
for classification of each digit  with 𝐿$%&'()*+,- regularization; (b) Experts used by the 
gate for classification of each digit with 𝐿$%&'()*+,- regularization.

(a) (b)

Ex
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Our Approach: Attentive Gate

Observations

• Just the attentive gate does not ensure an equitable expert usage as it still 
has the gate’s expert favoring problem and the initial learning of the experts

• But attentive gating has better validation error than MoE with 𝐿"*+,-./012
regularization

• However, when we also include 𝐿"*+,-./012 regularization then the 
combined loss training improves expert usage, per sample entropy and 
mutual information between expert and model output

• The task decomposition with regularized attentive gate is cleaner than with 
just regularization

• Currently the attention mechanism is used for both training and inference. 
This does not allow conditional computation during inference. So, instead 
we can use the trained experts to train a gate with the usual end-to-end 
method to achieve conditional computation during inference.



Our Approach: Sample-similarity regularization 

Motivation

• We saw that just attending to the expert output does not improve the 
expert usage as it still depends on the initial learning of the experts

• Dual temperature training avoids expert starvation but does not 
guarantee good expert usage.

• The above methods and the original MoE architecture’s performance 
are dependent on the initial learning of the expert and the gate and 
are prone to the initial mistakes leading to local optimums rather than 
global optimums

• What if we could include some domain knowledge to guide the gate 
and the experts during initial training? A simple heuristic for domain 
knowledge could be batchwise sample similarity



Our Approach: Sample-similarity regularization 

Method

• We regularize the gate probabilities by preferring the same expert for similar 
samples and different experts for dissimilar samples 

• The assumption here is that similar samples belong to similar tasks

• We define the regularization loss 𝐿+,-,./0,12 as:

𝐿+,-,./0,12 =
3

4!54
[∑6,6"

3
7
∑8 𝜆+/-8𝑝 𝑒 𝑥 𝑝 𝑒 𝑥9 ||𝑥 − 𝑥9||: −

3
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∑8,8" 𝜆;,<<𝑝 𝑒 𝑥 𝑝 𝑒9 𝑥9 ||𝑥 − 𝑥9||:]

where 𝐵 is batch size;  𝐾 is  the number of experts; 𝑥, 𝑥9 ∈ 𝑋 are pairs of 
samples in batch 𝑋; 𝑒, 𝑒9 ∈ 𝐸7 are the experts assigned to 𝑥, 𝑥′ respectively and 
𝜆+/-8, 𝜆;,<< are hand crafted parameters

• We use Euclidean distance in the above formulation but we can use other 
measures such as an RBF kernel. 



Loss = −∑JKLM 𝑇J log 𝑃J (𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑙𝑜𝑠𝑠) +
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𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛



Comparing training error for MoE without regularization, MoE with 𝐿'&()*+,-./
regularization for 𝑤'&()*+,-./ ∈ {0.2, … , 1.0}, MoE with 𝐿5'&'6,*'+7 regularization 
regularization for 𝜆5,&/ ∈ 1089, 108: , 𝜆;'<< ∈ {1089, … , 108!}

Our Approach: Sample-similarity regularization 



Comparing validation error for MoE without regularization, MoE with 𝐿'&()*+,-./
regularization for 𝑤'&()*+,-./ ∈ {0.2, … , 1.0}, MoE with 𝐿5'&'6,*'+7 regularization 
regularization for 𝜆5,&/ ∈ 1089, 108: , 𝜆;'<< ∈ {1089, … , 108!}

Our Approach: Sample-similarity regularization 



Comparing expert usage for MoE without regularization, MoE with 𝐿'&()*+,-./
regularization for 𝑤'&()*+,-./ ∈ {0.2, … , 1.0}, MoE with 𝐿5'&'6,*'+7 regularization 
regularization for 𝜆5,&/ ∈ 1089, 108: , 𝜆;'<< ∈ {1089, … , 108!}

Our Approach: Sample-similarity regularization 



Comparing sample entropy for MoE without regularization, MoE with 𝐿'&()*+,-./
regularization for 𝑤'&()*+,-./ ∈ {0.2, … , 1.0}, MoE with 𝐿5'&'6,*'+7 regularization 
regularization for 𝜆5,&/ ∈ 1089, 108: , 𝜆;'<< ∈ {1089, … , 108!}

Our Approach: Sample-similarity regularization 



Comparing mutual information for MoE without regularization, MoE with 
𝐿'&()*+,-./ regularization for 𝑤'&()*+,-./ ∈ {0.2, … , 1.0}, MoE with 𝐿5'&'6,*'+7
regularization regularization for 𝜆5,&/ ∈ 1089, 108: , 𝜆;'<< ∈ {1089, … , 108!}

Our Approach: Sample-similarity regularization 



Our Approach: Sample-similarity regularization 

Inference on 2000 samples of MNIST test data:  (a) Experts used by gate for 
classification of each digit  with 𝐿2$%$3*($)4 regularization; (b) Experts used by the gate 
for classification of each digit with 𝐿$%&'()*+,- regularization.

(a) (b)

Ex
pe
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Our Approach: Sample-similarity regularization 

Inference on 2000 samples of MNIST test data with 10 experts :  (a) Experts used by 
gate for classification of each digit  with 𝐿2$%$3*($)4 regularization; (b) Experts used by 
the gate for classification of each digit with 𝐿$%&'()*+,- regularization.

(a) (b)

Ex
pe
rts



Our Approach: Sample-similarity regularization 

Inference on 2000 samples of MNIST test data with 15 experts :  (a) Experts used by 
gate for classification of each digit  with 𝐿2$%$3*($)4 regularization; (b) Experts used by 
the gate for classification of each digit with 𝐿$%&'()*+,- regularization.

(a) (b)

Ex
pe
rts



Observations
• 𝐿9"*":/-".; regularization distributes the samples equitably between the 

experts with similar samples routed to the same expert

• Unlike 𝐿"*+,-./012 , 𝐿9"*":/-".;only uses experts required for the tasks and 
not all experts equally 

• 𝐿9"*":/-".; performs as well as 𝐿"*+,-./012 regularization for low values of 
𝜆9/*2 𝑎𝑛𝑑 𝜆<"==

• It provides a flexible method to include domain knowledge for task 
decomposition

Our Approach: Sample-similarity regularization 



Summary

• We present experiments to better understand how the gate decomposes 
the tasks between modules in MoE.

• Our experiments revealed that:

• MoEs are indeed inherently interpretable, however, 

• Existing architectures and methods of training them do not necessarily guarantee an 
interpretable gate decomposition among the modules. 

• There is no learning or error disadvantage for the gate to learn an interpretable task 
decomposition. 

• The heuristic of jointly optimising the gate and modules leads to uninterpretable task 
decompositions. 

• Achieving an interpretable task decomposition between the modules

• can allow error attribution to either the gate or the modules, and 

• Additionally the modules would be better suited for transferability

• We proposed 3 methods to improve batch distribution and expert usage



Future Work

• Test our approach on more complex and bigger 
datasets and architectures

• Currently the gate learns the expert selection policy. 
What if instead it learns to predict the expert loss?

• Address the following research questions
• Formalise gate and expert error attribution

• Does the same decomposition of the tasks enable both 
interpretability and transferability? Or do they need different 
task decompositions? 



Thank You!
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