¢ Modular neural networks (MNN), in which different sub-networks
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Our Contribution [2]

Empirical analysis of the state of

carry out different well-defined tasks, offer potential advantages for interpretability in Mixture of Experts (MoE)

interpretability and transferability over monolithic deep networks. and our 2 key findings based on this
¢ Research in MNN architectures has concentrated on their analysis:

performance and not on their interpretability.
¢ We attempt to address this gap in research in MNN architectures, 1.

MoE can be interpretable

specifically in the simplest gated modular neural network 2  Current training methods of MoE from
architecture, Mixture of Experts (MoE) [1].

What is interpretability”?

¢ Gating network learns a meaningful modular decomposition of the
Input space into regions with natural 'rules’.

¢ Facilitates

»  Attributing errors to the gate or

random Iinitialisation typically does not
produce an intuitively reasonable
modular decomposition of the input
space, even in very simple cases.

Why does the gate not always learn

- Attributing errors to the modules d gOOd decomposition?

- Model debugging
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Conclusion’

pre-trained experts. advantage for bad decompositions (Figure 4).

MoE are indeed inherently interpretable  There is no learning or error disadvantage to learning an
Existing architectures and methods of training them do interpretable task decomposition

not guarantee an interpretable task decomposition « Heuristic of jointly optimising the gate and experts leads to
among the modules uninterpretable task decompositions

Is there a training or error advantage for bad
decompositions?

Figure 4 shows that there is neither a training nor an error advantage for a bad decomposition.

Comparison of average validation error for combined Comparison of average training loss for combined
FMNIST and MNIST dataset FMNIST and MNIST dataset
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Figure 4 Comparison of training loss and validation error for pre-trained gate, trained with experts
pre-trained on custom partition of classes and un-trained experts, and then training new experts
with default parameter initialization and experts with the same initial parameter initialization as
the experts trained from for MNIST and combined FMNIST and MNIST datasets.

Does the heuristic of jointly training the gate and

modules cause bad decompositions?

Figure 5 shows that joint module and gate training could lead to poor allocation of data samples
and hence bad decompositions. We are investigating generic training methods of using additional
information for better gating decisions and consequently good decompositions..

Training sample distributions of 2 linear experts Training loss of 2 linear experts
with different learning rates with different learning rates
18 - ——linear module: Ir 0.01
2000 - 16 - linear module: Ir 0.0001
. v 14 4 e e
LY S
% 1500 - 212
@ —&— linear module: Ir 0.01 = T
© & linear module: Ir 0.0001 i‘-; '
L -
g 1000 g 0.8 -
2 S
= ® 06
500 -
A 0.4 1
\lfttﬁﬂlllllllllllllll‘ll‘lll 0.2
0 5 10 15 20 25 30 0 5 10 15 20 25 30
epochs epochs

Figure 5 Sample distribution and training loss of GMNN trained with 2 modules with different learning
rates. Module with higher learning rate captures most of the data samples and learns faster.
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